
RESEARCH ARTICLE

J.Natn.Sci.Foundation Sri Lanka 2018 46 (4): 547 - 557

DOI: http://dx.doi.org/10.4038/jnsfsr.v46i4.8630

1
1 Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya.
2 Department of Computer Science, Faculty of Science, University of Ruhuna, Matara.

Revised: 28 April 2018; Accepted: 25 May 2018

* Corresponding author (smv@dcs.ruh.ac.lk; https://orcid.org/0000-0002-2245-4527)

This article is published under the Creative Commons CC-BY-ND License (http://creativecommons.org/licenses/by-nd/4.0/).

properly cited and is not changed in anyway.

combines the ideas of both Aho-Corasick and Boyer-Moore

string matching algorithms. Aho-Corasick algorithm is known

as the fastest exact multiple string matching algorithm with

utilises a shift based approach in handling mismatches

in the matching phase to obtain a usually sub linear time

analysis has not yet been reported in the literature. In this

formally explain empirical results reported elsewhere for exact

and limited tolerance string matching. Performance analysis

model permits ‘complete’ exploration of the solution space of

models developed here could be useful for other researchers to

application domains. The analysis method can be extended to

cover Aho-Corasick and other string matching algorithms

INTRODUCTION

The primary objective of this article is to present a

comprehensive average time complexity analysis of

pattern

a quadratic time algorithm of O (nm) complexity in the

matching phase. Here n is the length of the input text to

the text and m is the length of the longest pattern. CW

has been developed by embedding the functionality of

Boyer-Moore algorithm (shifts) in AC algorithm. AC

(FSMs) with the remaining text to be analysed at each

alignment as the input tape. The data structures are built

reversed keywords. In addition to the trie construction

failure links that may be needed whenever a mismatch

occurs during the searching phase. CW does not construct

a mismatch occurs. Both algorithms achieve economy of

search at each alignment by searching along the current

branch of the tree ignoring all the other branches of the

character occurrences (char (.)) of the keyword sets.

Figure 1(a) and (b) show the difference between the two

548 S.D. Dewasurendra and S.M. Vidanagamachchi

December 2018 Journal of the National Science Foundation of Sri Lanka 46(4)

introduced (algorithm B and B1) combining the

concepts of AC and Boyer-Moore (BM) algorithms

time complexities of algorithm B (

searching phase of algorithm B performs sub-linear

on the average and it has a non-linear worst case time

complexity (

having linear worst case time complexity (

Walter

practical situations as algorithm B1 is having a high

overhead (

the average number of characters examined in a search

for random patterns in a text over a uniformly distributed

alphabet has been provided in Navarro et al. (2004).

either the pattern or the text are analysed for average

these results do not help in doing a proper exploration

of the problem

better solved through CW or any particular string

matching algorithm. Of particular interest is the work

performance of the pre-processing phase is evaluated in

terms of running time of the presented multiple keyword

can complement the present study on running time.

 Analysis of a suitable algorithm for Snort (open-

system) was carried out by) and it is

mentioned that they have not implemented algorithm

B1 due to its daunting complexity (theoretically and

empirically). Further there were no implementations

found on algorithm B1 to the best of their knowledge

(). The next paragraph describes the past

work on the empirical performance of the AC and CW

[based on algorithm B (

algorithms.

 Although Shoshana (2009) reports the CW algorithm

numbers of keywords. In Van (1990

than 13 keywords (). As reported in

 (c)

Figure 1. (a) Prefix based FSM implementation of AC algorithm for a keyword set of he, she, hers and h

et al

Average time complexity analysis of CW algorithm 549

Journal of the National Science Foundation of Sri Lanka 46(4) December 2018

Watson (1994

large pattern sets on that. Given the lack of general

agreement on the performance of CW and the key role

played by the shift operator and its heavy dependence on

explanation for the average time behaviour of CW.

 Against this background we took a closer look at the

computational performance of the algorithm B of CW in

we characterise in Vidanagamachchi (2017). Although

it is assumed that algorithm B of CW is practically

applicable in many applications (

found for algorithm B of CW though one was reported in

Watson (1994). We started by implementing the algorithm

B of CW to compare its empirical performance with AC

were presented in our previous work (Vidanagamachchi

et al

the average time complexity of CW applicable to the

The following section describes details of average time

permit a formal interpretation of different performance

results reported in literature.

 The remaining sections of this paper describe the

performance analysis of these two algorithms in detail.

The details of average complexity analysis (methods)

are given in the next section. Analysis of our results with

previously reported empirical results of CW follows.

Further it discusses the average time complexity of

limited tolerance version of CW algorithm.

METHODOLOGY

it was recognised (as has been observed by earlier

researchers too) that the key issue that determines the

average running time of the algorithm is the interplay

among the three computations: online component of the

within an alignment before a shift computation becomes

necessary.

 We tried to discover any order of magnitude

computation in the unstructured general case of random

multiple substring matching in unstructured input texts

(i) building the reversed trie and

(ii)

W
min

(i) search within the reversed trie for a given alignment

(ii)

(iii) shifting the trie and getting a new alignment with

the input text.

 What we discovered was that there was no such

general relation and that the relative magnitudes are

possibility of discovering relationships where problems

had some structure.

 This observation was substantiated by the varied

outcomes in empirical studies reported in the literature.

 Hence we set forth discovering a method of

representing the structure of a given problem context

which would permit a meaningful exploration of the

problem space (note: not the solution space).

 This led to the notion of a generic trie for a particular

problem context.

 In our case we observed that the main concern is

online computations and hence the average times were

methodology is valid for those cases too.

 We next formulated a set of expressions that

permitted us to explore the complete parameter space

for any particular problem context to compute average

computational times and validated the methodology

through its application to CW algorithm.

 This methodology is directly applicable to the

systematic analysis of any other string matching

algorithm.

 As far as the general procedure followed in developing

parameterised computation of probabilistic expectations

explained in detail in the next section.

550 S.D. Dewasurendra and S.M. Vidanagamachchi

December 2018 Journal of the National Science Foundation of Sri Lanka 46(4)

Let A S
n
be the sample space of all inputs

n T
n
(i) the number of steps (comparisons) taken

by A on input i in S
n
 and P

r
(i) the probability of input i

based on the probability distribution over S
n

average running time of A given S
n
 is E(T

n
). The average/

expected time complexity E(T
n
) is given by equation (1).

 = ...(1)

RESULTS AND DISCUSSION

Let P
m

be the probability of matching a character in

b
T
 the branching factor of the

reversed keyword trie and j the distance from the root

v

trie [Figure 1(c)].

text before a match is found when j=1 can be obtained as

in equation (2) below.

= Pm + 2(1- Pm) Pm+ 3(1- Pm)
2
Pm+…+bT(1- Pm)

b
T

-1
 Pm

 = ...(2)

alignment before a shift is made when j = 1 can be

= bT (2’) ...(2’)

alignment when j=1 is (1- P
m
)b

T
. A shift here is as

the reversed trie is shifted to the right along the input text

string by an amount computed by the CW algorithm.

 is

 = (1- Pm)
b

T

Let α = (1- Pm)
b

T

 = α (3) ...(3)

j = 1 is 1-

b
T

j = 2 can be given as in equations (4) and (5).

E12 = (1-) +

 = (1-α) +

 ...(4)

 = (by assumption that (by assumption that b
T
 remains the same)

 ...(5)

 The assumption in equation

the isomorphism between sub trees of the trie in the

search. We will generalise this assumption to include

We will generalise this assumption to include = , ∀ i, j.

j = 2 can

= (1-α) + bT (4’) ...(4’)

j

 = (1- Pm)
b

T +[1 –(1- Pm)
b

T] (1- Pm)
b

T

 = α + (1-α)α

Let β1 = α + (1-α)α

 Hence, = β1
...(6)

 Similarly we can obtain the probability that there will

j is as = Probability that there was a shift when

Probability that there was a shift when

that there was no shift when) × (Probability that

there was a shift when j =2) follows:

= β1 + (1-β1)α

Let β2 = β1 + (1-β1)α

Which gives

= β2 (7) ...(7)

Likewise we obtain

= β3 =β2 + (1-β2)α (8) ...(8)

 Generalising the above we get equation (9) as the

Average time complexity analysis of CW algorithm 551

Journal of the National Science Foundation of Sri Lanka 46(4) December 2018

when
Min

w
Min

 is the length of the shortest

pattern.

= β wMin -1 =β wMin -2 + (1-β wMin -2)α (9) ...(9)

 Then the probability that there will not be a shift in

1 - = 1- β wMin -1 (10) ...(10)

‘j’ at which a shift will happen

(j)= 1×α+ 2×(1-α)α + 3×(1-β1)α+ 4×(1-β2)α +…+ ×(1-

×(1-)α

=α[3 - 2α+] (11)

 ...(11)

match is found when j = 3 is

E13 = E12 (1-) +

 = ((1-α) +) (1-) +

= ((1-α) +) (1-β1) +

= [(2-α)(1-β1)+1] (12) ...(12)

alignment before a match is found when j = 4 is

E14 = E13 (1-) +

 = [((1-α) +) (1-β1) +] (1-β2) +

 = [(2-α)(1-β1)+1] (1-β2) +

 = {[(2-α)(1-β1)+1] (1-β2)+1}

 = [(2-α)(1-β1)(1-β2) + (1-β2) + 1]

E15 = [(2-α)(1-β1)(1-β2) (1-β3) + (1-β2)(1-β3) + (1-

) + (1-β3) + 1]

E1j = [(2-α)(1-β1)(1-β2)(1-β3)… (1-βj-2) + (1-β2)(1-β3)… (1-

)… (1-βj-2)+ (1-β3)… (1-βj-2) +…+ (1-βj-2) + 1]

 (13)
 ...(13)

alignment before a match is found when j = (j) can be written as in (14) assuming can be

written as in equation (14) assuming can be written as in (14) assuming Eij
S
 = E11

S
,∀i, j.

=

 ...(14)

alignment before a shift is made when j = (j) can be

=

 + bT (14’) ...(14’)

v that led to the shift (the parent

node of the set of nodes that failed to produce a match).

Since there is no way that this can be guessed we take

the following approach to get an average estimate for

the same. The maximum possible shift when there is a

mismatch is w
Min

. We can safely assume that the average

shift length is (1+shiftFactor × (W
Min

 -1)) each time a

shift happens (as the minimum shift is 1) for some 1) for some

.

If the text string is very much longer than the lon

.

 If the text string is very much longer than the longest

effects and consider only the alignments where the trie

‘j’ at which a shift

will happen in the ith

equation (15).

(j)=α[3 - 2α+] (15) ...(15)

 Here d
T

equivalent to max {m(0), …,m(p-1)}

m[0…(p-1)] is the array of

keyword lengths.

alignment ‘i’ before a match is found when j = (j) is is
as shown in (16). as shown in equation (16).

552 S.D. Dewasurendra and S.M. Vidanagamachchi

December 2018 Journal of the National Science Foundation of Sri Lanka 46(4)

=

 ...(16)

alignment ‘i’ before a shift is made when j =before a shift is made when j = (j) can be obtained as, can be

=

 bT (16’) ...(16’)

 Extending equation (9) for the ith

probability that there will be a shift in the ith alignment

when
T
 where d

T
 is the depth of the reversed trie is

= = + (1-)α (17) ...(17)

which is also the probability that there will be a shift in

the ith (P(s)
i
) (18).

P(s)i= = = + (1 -)α (18) ...(18)

shift length is (1+shiftFactor×(W
Min

 -1)) each time a shift

ith alignment

(E(s)
i

happens to be the general expression for the expected

shift length in an alignment when edge effects are

neglected as assumed above.

E(s)i= (1+shiftFactor WMin -1)) [+ (1 -)α (19)

 ...(19)

where,

matching process is

n/ E(S)i. (20) ...(20)

 The n above is the length of the input text. The

expected number of comparisons made in the matching

process can then be obtained as

E(c) = [n/ E(S)i] ...(21)

of comparisons (average time complexity) depends on

derived average time complexity of CW with previously

published results was carried out.

 The whole idea is to systematically explore the

solution space of CW algorithm applications. Except

model of the solution space has been reported. The

model we propose in this paper permits conducting

parameters. The model helps in formally establishing the

empirical results reported elsewhere and to investigate

the performance of CW for particular applications. In

p

m[0 … (p-1) x[0 … (p-1)

y[1 … n]. This is because

general modelling framework. Their representation is

b
T

d
T

W
min

n shiftFactor and P
m
. To demonstrate how general

topologies of input tries can be generated to represent

tries may be used for the case where the keyword

lengths vary between W
min

 and d
T
 in a uniform manner:

each line segment represents one character from the

input alphabet (Figure 2). Figure 2(a) would stand for

p = 1/2 × (d
T
 - W

min
W

min
d

T
). A possible way to use

these generic forms in a performance evaluation would

be to select the topology that could best describe the

estimate of p as indicated in Figure 2(a).

Figure 2. Two generic tries with word lengths uniformly varying between

bT

dT

Wmin

bT

dT

Wmin

 Two generic tries with word lengths uniformly varying

between W
min

 and d
T

Average time complexity analysis of CW algorithm 553

Journal of the National Science Foundation of Sri Lanka 46(4) December 2018

 As stated in the original paper on CW algorithm

(

matching (including scanning and shifts) depends on

the total number of character comparisons. According

to the results reported by

the average number of references to a document/text

character is low when the length of the keywords is high.

average character references is around 0.85 and when the

for 2 keywords. This behaviour can be explained with

the length of the smallest pattern (w
Min

) in our average

time complexity analysis. If w
Min

character references in the text is likely to decrease as

the shift length can increase up to w
Min

. This is supported

shift length becomes high whenever the w
Min

 is high.

equation (20) becomes low and the expected number of

references becomes low according to equation (21).

in (1979) indicate that the average

number of references to a document/text character

increases slightly with higher numbers of keywords. For

The expected value of ‘j’ at which a shift will happen in the ith alignment for d
T

b
T
 = 5; (b) b

T
 = 10

Figure 3. The expected value of ‘j’ at which a shift will happen in the i alignment for d = 10,000 (a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Pm

E
s

i(
j)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

Pm

E
s
i(
j)

Figure 4. Variation of (a) P(s) and (b) E(c) with P , for

0 0.5 1
-30

-25

-20

-15

-10

-5

0

Pm

lo
g
(p

rS
h
ft

Ia
lg

n
t)

0 0.5 1
20

25

30

35

40

45

50

55

Pm

lo
g
(e

x
p
C

o
m

p
)

Variation of (a) P(s)
i
 and (b) E(c) with P

m
b

T

d
T

w
Min

shift-factor = 0.4

Figure 5. Variation of (a) P(s) and (b) E(c) with P , for

0 0.5 1
-140

-120

-100

-80

-60

-40

-20

0

Pm

lo
g
(p

rS
h
ft

Ia
lg

n
t)

0 0.5 1
20

40

60

80

100

120

140

160

Pm

lo
g
(e

x
p
C

o
m

p
)

Variation of (a) P(s)
i
 and (b) E(c) with P

m
b

T

d
T

w
Min

shift-factor = 0.4

554 S.D. Dewasurendra and S.M. Vidanagamachchi

December 2018 Journal of the National Science Foundation of Sri Lanka 46(4)

of character references are 0.4 for a keywords set of 2

while the number of character references increased up to

0.8 for keywords set of 64. In our own empirical studies

et al

of the keyword set used in the present experiment.

(1979) and Vidanagamachchi et al

conclusions based on them is questionable.

b
T
 increases

when there are more keywords presented in the trie and

n
a
:

theoretically the maximum possible branching factor

is min{p, n
a
} p is the number of keywords.

P
m
 (which

is the probability that any given character reference is

p. The effect on the

value of (1- P
m
)b

T

 would depend on interplay between

the increase of b
T
 and the decrease of P

m
. If the latter

the number of references to the document characters;

is clearly visible in Figures 4 and 5 obtained by simulating

our expressions in equations (18) and (21).

 Note that the abscissa in Figures 4 and 5 are log-

scales. Figure 3 indicates how increasing b
T
 could

increase expected ‘j’ at which a shift could happen in a

given alignment: when b
T

j

increasing the number of character comparisons. In

average number of references to a document character

is lower when the number of words in the keyword set

clearly not the case according to our analysis as easily

seen by regenerating any one of Figures 4 to 7 with

corresponding higher values for b
T

d
T
 and W

min
 using

equation (21). On the other hand when W
min

 is increased

immediate reduction in the average number of character

correct.

 According to Watson (1994) and Aho

(1990

Moore aspects of the CW algorithm can make it faster

Figure 6. Variation of (a) P(s) and (b) E(c) with P , for

0 0.5 1
-14

-12

-10

-8

-6

-4

-2

0

Pm

lo
g
(p

rS
h
ft

Ia
lg

n
t)

0 0.5 1
10

15

20

25

Pm

lo
g
(e

x
p
C

o
m

p
)

Variation of (a) P(s)
i
 and (b) E(c) with P

m
b

T
d

T

w
Min

shift-factor = 0.4

Figure 7. Variation of (a) P(s)i and (b) E(c) with Pm, for

0 0.5 1
-140

-120

-100

-80

-60

-40

-20

0

Pm

lo
g
(p

rS
h
ft

Ia
lg

n
t)

0 0.5 1
0

20

40

60

80

100

120

140

160

Pm

lo
g
(e

x
p
C

o
m

p
)

Variation of (a) P(s)
i
 and (b) E(c) with P

m
b

T
d

T

w
Min

shift-factor = 0.4

edge. This can be investigated in our model using

varying numbers of keywords to compute the expected

number of comparisons in an alignment ‘i’ before a shift

is made. A simulation of equation (16’) with the estimator

estimator) given for the generic trie in Figure 2(a) given for the

generic trie in Figure 2(a) gives the value for gives the value for as 2.33 for as

2.33 for p = 28 P
m
 = 0.1 b

T
 = 2 d

T
 = 5 and W

min
 = 2;

whereas comes out as 15.00 for

This type of numerical experimentation with our mod

 comes out as 15.00 for p = 140 P
m
 = 0.1

b
T
 = 10 d

T
 = 5 and W

min
 = 2.

Average time complexity analysis of CW algorithm 555

Journal of the National Science Foundation of Sri Lanka 46(4) December 2018

 This type of numerical experimentation with our model

on empirical studies. Our own empirical results related

to this were reported in Vidanagamachchi et al

where the matching time of AC algorithm as well as

CW was seen to increase with increasing numbers

of keywords. Work reported in) for text

increased gradually with increasing lengths of keywords.

(

references to the text decreased with the increasing

length of patterns. It was claimed that more shifts were

should get decreased if the shifts were large enough (this

is bounded by w
Min

).

we reported in Vidanagamachchi et al. (2012). According

w
min

 and d
T
 should also become high.

in equation (21) gets decreased as E(s)
i
 in equation (19)

there is a high possibility of increasing the expected

number of comparisons in the alignment ‘i’ before a shift

is made made (), as can be seen by simulating (16’),

increasing the average running time. Here the interplay

between the ratio of n/ E(S)
i
 and and can be seen to determine the effect increasing can be seen to

determine the effect increasing keyword lengths. If the

former decreased gradually while while increased, balancing the effects,

 observed in Vidanagamachchi et al.

(2012).

 The work of Pandiselvam et al. (2014

(2006) do not include any proteomics or other text analysis

regarding CW time complexity except comparisons of

string matching algorithms. Therefore their results are

not discussed.

 In order to put the work reported in this paper in

Walter

37 alphanumeric characters. Their analysis was based

on the average number of character references they

32 and 64. We can compare this with proteomic string

the known set of amino acids and much longer peptides

with isoforms acting as keywords and very much longer

peptide sequences with isoforms and variants acting

as input texts: inexact keywords to be matched against

inexact input strings. P
m
 may decrease with n

a

possible value in a randomised experiment being 1/n
a

with even 0

 The characterisation we did on proteomic string

matching reveals a high degree of variants and isoforms

 (a) (b)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pm

p
rS

h
ft

Ia
lg

n
t

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

15

Pm

e
x
p
C

o
m

p

Variation of (a)P(s)
i
 and (b)E(c)

T

d
T Min

 (b)

0 0.5 1
-250

-200

-150

-100

-50

0

Pm

lo
g
(p

rS
h
ft

Ia
lg

n
t)

0 0.5 1
0

50

100

150

200

250

Pm

lo
g
(e

x
p
C

o
m

p
)

Variation of (a) log(P(s)
i
) and (b) log(E(c)

b
T T Min

13

(a) (b)

556 S.D. Dewasurendra and S.M. Vidanagamachchi

December 2018 Journal of the National Science Foundation of Sri Lanka 46(4)

pose this problem as a limited tolerance inexact string

can be used in this latter context.

The limited tolerance algorithm was designed to solve

implementation of Aho-Corasick algorithm. This limited

tolerance idea can easily be extended to CW algorithm.

using peptide patterns generated from protein digestion.

Then the input text is a protein assembled from digested

peptides (eg: unreviewed protein in a database or a set

consider the peptides digested (in-silico) from a generated

reference protein:

(M or C)’

follows; Figure 10(a) shows how the tolerance can be

this as shown in Figure 10(b) for the proposed limited

tolerance variant.

 (a) Handling tolerance using original AC algorithm; (b) AC algorithm with limited tolerance; (c) handling

tolerance using original CW algorithm; (d) CW algorithm with limited tolerance

be generated as follows; Here the minimum length of a

pattern is 4 and the position 5 of the input text (protein

sequence) was aligned to the root of the FSM. Figure

10(c) shows how the tolerance can be handled by the

for the limited tolerance variant.

it is shown that the limited tolerance methodology can

save computational time by reducing the branches.

tree may become larger with all possible tolerances;

the time for searching should change with them too.

The value of b
T

varies based on the allowed tolerances

and its value becomes high if the number of variants

the results of the entire analysis [equations from (2) to

(20) in the complexity analysis] when applying them

AC and CW algorithms. As we have demonstrated

performance improvement. It is also very likely to have

a considerable effect on average time complexity of CW

analysis provided in this paper can easily be used for this

variant of CW and AC by pre-processing the keyword

tries as indicated in Figure 10.

Average time complexity analysis of CW algorithm 557

Journal of the National Science Foundation of Sri Lanka 46(4) December 2018

CONCLUSION

The average complexity analysis of CW algorithm

provides a comprehensive and a systematic analysis

helps to formally interpret previously reported empirical

solution space of CW. We have provided implements to

capture parameters that cannot be explicitly incorporated

thus permitting a systematic evaluation of their effects

too. The importance of this nature of performance

evaluation model for CW is highlighted in the context of

heavy application dependence of runtime performance.

The set of equations can be used easily by other

researchers to carryout comprehensive investigation of

 The application to limited tolerance inexact multiple

string matching context is also new and can save

computing time by exploiting mutations/variations

present within peptide sequences to reduce the branching

b
T

expected shift length (this is always less than the length

w
Min

b
T

time performance of CW algorithm. The effect of

keyword length distribution and the number of keywords

can be analysed based on generic trie structures that

can be built to represent particular application domains

following the guidelines provided in our work.

The authors convey their sincere gratitude to Dr R.G.

Ragel and Prof. M. Niranjan who are partners in the main

for early work with them led the authors to undertake the

current investigation.

REFERENCES

bibliographic search. Communications of the ACM 18(6):

333 – 340.

 DOI: https://doi.org/10.1145/360825.360855

Handbook of Theoretical Computer Science

 DOI: https://doi.org/10.1016/B978-0-444-88071-0.50010-2

Barton C. & Iliopoulos C.S. (2014). On the average-case

complexity of pattern matching with wildcards. Leibniz

International Proceedings in Informatics

Germany. [cs.DS]

algorithm. Communications of the ACM 20(10): 762 – 772.

 DOI: https://doi.org/10.1145/359842.359859

fast on the average. Proceedings of the 6th International

Colloquium on Automata, Languages and Programming

 DOI: https://doi.org/10.1007/3-540-09510-1_10

for intrusion detection systems. Masters thesis

algorithms. International Journal of Advanced Computer

Science and Information Technology 03(04): 344 – 353.

evaluation of the pre-processing phase of multiple keyword

matching algorithms. Proceedings of the 15th Panhellenic

Conference on Informatics (PCI)

Navarro G. & Fredriksson K. (2004). Average complexity of

exact and approximate multiple string matching. Theoretical

Computer Science 321(2 – 3): 283 – 290.

Comparative Study on String Matching Algorithms of

Biological Sequences. [cs.DS]

Shoshana N. (2009). Pattern Matching Algorithms: An Overview.

Available at www.sci.brooklyn.cuny.edu /~shoshana /pub/

secondExam.ppt

Handbook of Theoretical Computer

Science, volume A - Algorithms and Complexity. MIT

Vidanagamachchi S.M. (2017). Quantitative and qualitative

computational pipelines for high-throughput shotgun

proteomics. PhD thesis

Vidanagamachchi S.M. (2017). Quantitative and qualitative

computational pipelines for high-throughput shotgun

proteomics. PhD thesis

International

Journal of Research in Computer Science 2(6): 33 – 37.

Watson B.W. (1994). The performance of single keyword and

multiple keyword pattern matching algorithms. Computing

Science Notes

Watson B.W. (1995). Taxonomies and toolkits of regular

language algorithms. PhD thesis

