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combines the ideas of both Aho-Corasick and Boyer-Moore 

string matching algorithms. Aho-Corasick algorithm is known 

as the fastest exact multiple string matching algorithm with 

utilises a shift based approach in handling mismatches 

in the matching phase to obtain a usually sub linear time 

analysis has not yet been reported in the literature. In this 

formally explain empirical results reported elsewhere for exact 

and limited tolerance string matching. Performance analysis 

model permits ‘complete’ exploration of the solution space of 

models developed here could be useful for other researchers to 

application domains. The analysis method can be extended to 

cover Aho-Corasick and other string matching algorithms 

INTRODUCTION

The primary objective of this article is to present a 

comprehensive average time complexity analysis of 

pattern 

a quadratic time algorithm of O (nm) complexity in the 

matching phase. Here n is the length of the input text to 

the text and m is the length of the longest pattern. CW 

has been developed by embedding the functionality of 

Boyer-Moore algorithm (shifts) in AC algorithm. AC 

(FSMs) with the remaining text to be analysed at each 

alignment as the input tape. The data structures are built 

reversed keywords. In addition to the trie construction 

failure links that may be needed whenever a mismatch 

occurs during the searching phase. CW does not construct 

a mismatch occurs. Both algorithms achieve economy of 

search at each alignment by searching along the current 

branch of the tree ignoring all the other branches of the 

character occurrences (char (.)) of the keyword sets. 

Figure 1(a) and (b) show the difference between the two 



548 S.D. Dewasurendra and S.M. Vidanagamachchi

December 2018 Journal of the National Science Foundation of Sri Lanka 46(4)

introduced (algorithm B and B1) combining the 

concepts of AC and Boyer-Moore (BM) algorithms 

time complexities of algorithm B (

searching phase of algorithm B performs sub-linear 

on the average and it has a non-linear worst case time 

complexity (

having linear worst case time complexity (

Walter

practical situations as algorithm B1 is having a high 

overhead (

the average number of characters examined in a search 

for random patterns in a text over a uniformly distributed 

alphabet has been provided in Navarro et al. (2004). 

either the pattern or the text are analysed for average 

these results do not help in doing a proper exploration 

of the problem 

better solved through CW or any particular string 

matching algorithm. Of particular interest is the work 

performance of the pre-processing phase is evaluated in 

terms of running time of the presented multiple keyword 

can complement the present study on running time.

  Analysis of a suitable algorithm for Snort (open-

system) was carried out by ) and it is 

mentioned that they have not implemented algorithm 

B1 due to its daunting complexity (theoretically and 

empirically). Further there were no implementations 

found on algorithm B1 to the best of their knowledge 

( ). The next paragraph describes the past 

work on the empirical performance of the AC and CW 

[based on algorithm B (

algorithms.

  Although Shoshana (2009) reports the CW algorithm 

numbers of keywords. In Van (1990

than 13 keywords ( ). As reported in 

                                   (c) 

Figure 1. (a) Prefix based FSM implementation of AC algorithm for a keyword set of he, she, hers and h

et al
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Watson (1994

large pattern sets on that. Given the lack of general 

agreement on the performance of CW and the key role 

played by the shift operator and its heavy dependence on 

explanation for the average time behaviour of CW.

  Against this background we took a closer look at the 

computational performance of the algorithm B of CW in 

we characterise in Vidanagamachchi (2017). Although 

it is assumed that algorithm B of CW is practically 

applicable in many applications (

found for algorithm B of CW though one was reported in 

Watson (1994). We started by implementing the algorithm 

B of CW to compare its empirical performance with AC 

were presented in our previous work (Vidanagamachchi 

et al

the average time complexity of CW applicable to the 

The following section describes details of average time 

permit a formal interpretation of different performance 

results reported in literature.

  The remaining sections of this paper describe the 

performance analysis of these two algorithms in detail. 

The details of average complexity analysis (methods) 

are given in the next section. Analysis of our results with 

previously reported empirical results of CW follows. 

Further it discusses the average time complexity of 

limited tolerance version of CW algorithm. 

METHODOLOGY

it was recognised (as has been observed by earlier 

researchers too) that the key issue that determines the 

average running time of the algorithm is the interplay 

among the three computations:  online component of the 

within an alignment before a shift computation becomes 

necessary.

  We tried to discover any order of magnitude 

computation in the unstructured general case of random 

multiple substring matching in unstructured input texts 

(i) building the reversed trie and

(ii) 

W
min

(i) search within the reversed trie for a given alignment 

(ii) 

(iii) shifting the trie and getting a new alignment with 

the input text.

  What we discovered was that there was no such 

general relation and that the relative magnitudes are 

possibility of discovering relationships where problems 

had some structure.

  This observation was substantiated by the varied 

outcomes in empirical studies reported in the literature. 

  Hence we set forth discovering a method of 

representing the structure of a given problem context 

which would permit a meaningful exploration of the 

problem space (note: not the solution space).

  This led to the notion of a generic trie for a particular 

problem context.

  In our case we observed that the main concern is 

online computations and hence the average times were 

methodology is valid for those cases too.

  We next formulated a set of expressions that 

permitted us to explore the complete parameter space 

for any particular problem context to compute average 

computational times and validated the methodology 

through its application to CW algorithm.

  This methodology is directly applicable to the 

systematic analysis of any other string matching 

algorithm.

  As far as the general procedure followed in developing 

parameterised computation of probabilistic expectations 

explained in detail in the next section. 
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Let A S
n 
be the sample space of all inputs 

n T
n
(i) the number of steps (comparisons) taken 

by A on input i in S
n
 and P

r
(i) the probability of input i 

based on the probability distribution over S
n

average running time of A given S
n
 is E(T

n
). The average/ 

expected time complexity E(T
n
) is given by equation (1).

 =                                                     ...(1)

RESULTS AND DISCUSSION

Let P
m 

be the probability of matching a character in 

b
T
 the branching factor of the 

reversed keyword trie and j the distance from the root 

v

trie [Figure 1(c)].

text before a match is found when j=1 can be obtained as  

in equation (2) below.

= Pm + 2(1- Pm) Pm+ 3(1- Pm)
2
Pm+…+bT(1- Pm)

b
T

-1
 Pm 

         =                                                       ...(2)

alignment before a shift is made when j = 1 can be 

= bT           (2’) ...(2’)

alignment when j=1 is (1- P
m
)b

T 
. A shift here is as 

the reversed trie is shifted to the right along the input text 

string by an amount computed by the CW algorithm.

 is

 = (1- Pm)
b

T   

Let α  = (1- Pm)
b

T

 = α           (3) ...(3)

j = 1 is 1-

b
T
 

j = 2 can be given as in equations (4) and (5).

E12 =  (1- ) + 

      =  (1-α) + 
             

 ...(4)

 =  (by assumption that  (by assumption that b
T
 remains the same)  

  ...(5)

  The assumption in equation 

the isomorphism between sub trees of the trie in the 

search. We will generalise this assumption to include 

We will generalise this assumption to include  = , ∀ i, j. 

j = 2 can 

=  (1-α) + bT          (4’)  ...(4’)

j 

 = (1- Pm) 
b

T +[1 –(1- Pm)
b

T ] (1- Pm)
b

T 

     = α + (1-α)α

Let β1 = α + (1-α)α

 Hence,  = β1           
...(6)

  Similarly we can obtain the probability that there will 

j is as = Probability that there was a shift when  

Probability that there was a shift when 

that there was no shift when ) × (Probability that 

there was a shift when j =2) follows:

= β1 + (1-β1)α

Let  β2 = β1 + (1-β1)α

Which gives

= β2           (7)  ...(7)

Likewise we obtain

= β3 =β2 + (1-β2)α         (8)  ...(8)

  Generalising the above we get equation (9) as the 
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when 
Min

w
Min

 is the length of the shortest 

pattern.

= β wMin -1 =β wMin -2 + (1-β wMin -2)α      (9)  ...(9)

  Then the probability that there will not be a shift in 

1 - = 1- β wMin -1         (10)  ...(10)

‘j’ at which a shift will happen 

(j)= 1×α+ 2×(1-α)α + 3×(1-β1)α+ 4×(1-β2)α +…+ ×(1-

 
   

×(1- )α     

  
=α[3 - 2α+ ]        (11) 

 ...(11)

match is found when j = 3 is

E13 = E12 (1- ) + 

 = (  (1-α) + ) (1- ) + 

= (  (1-α) + ) (1-β1) + 

= [(2-α)(1-β1)+1]         (12)  ...(12)

alignment before a match is found when j = 4 is

E14 = E13 (1- ) + 

 = [(  (1-α) + ) (1-β1) + ] (1-β2) + 
  

 = [(2-α)(1-β1)+1]  (1-β2) + 

 = {[(2-α)(1-β1)+1] (1-β2)+1} 

 = [(2-α)(1-β1)(1-β2) + (1-β2) + 1] 

E15 = [(2-α)(1-β1)(1-β2) (1-β3) + (1-β2)(1-β3) + (1-

  ) + (1-β3) + 1] 

E1j = [(2-α)(1-β1)(1-β2)(1-β3)… (1-βj-2) + (1-β2)(1-β3)… (1-

  
)… (1-βj-2)+ (1-β3)… (1-βj-2) +…+ (1-βj-2) + 1] 

  

 

  
    (13) 
 ...(13)

alignment before a match is found when j = (j) can be written as in (14) assuming  can be 

written as in equation (14) assuming can be written as in (14) assuming Eij
S
 = E11

S
,∀i, j.   

=

   ...(14)

alignment before a shift is made when j = (j) can be 

= 

 

   + bT  (14’)  ...(14’)

v that led to the shift (the parent 

node of the set of nodes that failed to produce a match). 

Since there is no way that this can be guessed we take 

the following approach to get an average estimate for 

the same. The maximum possible shift when there is a 

mismatch is w
Min

. We can safely assume that the average 

shift length is (1+shiftFactor × (W
Min

 -1)) each time a 

shift happens (as the minimum shift is 1) for some 1) for some  

. 

If the text string is very much longer than the lon

.

  If the text string is very much longer than the longest 

effects and consider only the alignments where the trie 

‘j’ at which a shift 

will happen in the ith

equation (15).

(j)=α[3 - 2α+ ]        (15)  ...(15)

  Here d
T 

equivalent to max {m(0), …,m(p-1)}

m[0…(p-1)] is the array of 

keyword lengths.

alignment ‘i’ before a match is found when j = (j) is  is 
as shown in (16).  as shown in equation (16).
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= 

     ...(16)

alignment ‘i’ before a shift is made when j =before a shift is made when j = (j) can be obtained as,  can be 

=
 

  

  bT  (16’)  ...(16’)

  Extending equation (9) for the ith

probability that there will be a shift in the ith alignment 

when 
T
 where d

T
 is the depth of the reversed trie is 

= =  + (1- )α       (17)  ...(17)

which is also the probability that there will be a shift in 

the ith (P(s)
i
) (18).

P(s)i= = =  + (1 - )α      (18)  ...(18)

shift length is (1+shiftFactor×(W
Min

 -1)) each time a shift 

ith alignment 

(E(s)
i

happens to be the general expression for the expected 

shift length in an alignment when edge effects are 

neglected as assumed above.

E(s)i= (1+shiftFactor WMin -1)) [  + (1 - )α      (19)  

   

  ...(19)

where, 

matching process is

n/ E(S)i.           (20)  ...(20)

  The n above is the length of the input text. The 

expected number of comparisons made in the matching 

process can then be obtained as

 
E(c) = [n/ E(S)i]  ...(21)

of comparisons (average time complexity) depends on 

derived average time complexity of CW with previously 

published results was carried out.

  The whole idea is to systematically explore the 

solution space of CW algorithm applications. Except 

model of the solution space has been reported. The 

model we propose in this paper permits conducting 

parameters. The model helps in formally establishing the 

empirical results reported elsewhere and to investigate 

the performance of CW for particular applications. In 

p

m[0 … (p-1) x[0 … (p-1)

y[1 … n]. This is because 

general modelling framework. Their representation is 

b
T 

d
T 

W
min

n shiftFactor and P
m
. To demonstrate how general 

topologies of input tries can be generated to represent 

tries may be used for the case where the keyword 

lengths vary between W
min

 and d
T
 in a uniform manner: 

each line segment represents one character from the 

input alphabet (Figure 2). Figure 2(a) would stand for 

p = 1/2 × (d
T
 - W

min
W

min
d

T
). A possible way to use 

these generic forms in a performance evaluation would 

be to select the topology that could best describe the 

estimate of p as indicated in Figure 2(a).

Figure 2. Two generic tries with word lengths uniformly varying between 

bT

dT

Wmin

bT

dT

Wmin

 Two generic tries with word lengths uniformly varying 

between W
min

 and d
T
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 As stated in the original paper on CW algorithm 

(

matching (including scanning and shifts) depends on 

the total number of character comparisons. According 

to the results reported by 

the average number of references to a document/text 

character is low when the length of the keywords is high. 

average character references is around 0.85 and when the 

for 2 keywords. This behaviour can be explained with 

the length of the smallest pattern (w
Min

) in our average 

time complexity analysis. If w
Min

character references in the text is likely to decrease as 

the shift length can increase up to w
Min

. This is supported 

shift length becomes high whenever the w
Min

 is high. 

equation (20) becomes low and the expected number of 

references becomes low according to equation (21).

in  (1979) indicate that the average 

number of references to a document/text character 

increases slightly with higher numbers of keywords. For 

The expected value of ‘j’ at which a shift will happen in the ith alignment for d
T

b
T
 = 5; (b) b

T
 = 10

Figure 3. The expected value of ‘j’ at which a shift will happen in the i  alignment for d  = 10,000 (a)
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Figure 4. Variation of (a) P(s)  and (b) E(c) with P , for 
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of character references are 0.4 for a keywords set of 2 

while the number of character references increased up to 

0.8 for keywords set of 64. In our own empirical studies 

et al

of the keyword set used in the present experiment. 

 

(1979) and Vidanagamachchi et al

conclusions based on them is questionable.

b
T
 increases 

when there are more keywords presented in the trie and 

n
a
: 

theoretically the maximum possible branching factor 

is min{p, n
a
} p is the number of keywords. 

P
m
 (which 

is the probability that any given character reference is 

p. The effect on the 

value of (1- P
m
)b

T

  would depend on interplay between 

the increase of b
T
 and the decrease of P

m
. If the latter 

the number of references to the document characters; 

is clearly visible in Figures 4 and 5 obtained by simulating 

our expressions in equations (18) and (21).

  Note that the abscissa in Figures 4 and 5 are log-

scales. Figure 3 indicates how increasing b
T
 could 

increase expected ‘j’ at which a shift could happen in a 

given alignment: when b
T

j

increasing the number of character comparisons. In 

average number of references to a document character 

is lower when the number of words in the keyword set 

clearly not the case according to our analysis as easily 

seen by regenerating any one of Figures 4 to 7 with 

corresponding higher values for b
T

d
T
 and W

min
 using 

equation (21). On the other hand when W
min

 is increased 

immediate reduction in the average number of character 

correct.

  According to Watson (1994 ) and Aho 

(1990

Moore aspects of the CW algorithm can make it faster 

Figure 6. Variation of (a) P(s)  and (b) E(c) with P , for 
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Figure 7. Variation of (a) P(s)i and (b) E(c) with Pm, for 
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edge. This can be investigated in our model using 

varying numbers of keywords to compute the expected 

number of comparisons in an alignment ‘i’ before a shift 

is made. A simulation of equation (16’) with the estimator 

estimator ) given for the generic trie in Figure 2(a)  given for the 

generic trie in Figure 2(a) gives the value for gives the value for  as 2.33 for  as 

2.33 for p = 28  P
m
 = 0.1  b

T
 = 2  d

T
 = 5 and W

min
 = 2; 

whereas comes out as 15.00 for 

This type of numerical experimentation with our mod

 comes out as 15.00 for p = 140  P
m
 = 0.1  

b
T
 = 10  d

T
 = 5 and W

min
 = 2.
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 This type of numerical experimentation with our model 

on empirical studies. Our own empirical results related 

to this were reported in Vidanagamachchi et al

where the matching time of AC algorithm as well as 

CW was seen to increase with increasing numbers 

of keywords. Work reported in ) for text 

increased gradually with increasing lengths of keywords. 

(

references to the text decreased with the increasing 

length of patterns. It was claimed that more shifts were 

should get decreased if the shifts were large enough (this 

is bounded by w
Min

). 

we reported in Vidanagamachchi et al. (2012). According 

w
min

 and d
T
 should also become high. 

in equation (21) gets decreased as E(s)
i
 in equation (19) 

there is a high possibility of increasing the expected 

number of comparisons in the alignment ‘i’ before a shift 

is made made ( ), as can be seen by simulating (16’), 

increasing the average running time. Here the interplay 

between the ratio of n/ E(S)
i
 and and  can be seen to determine the effect increasing  can be seen to 

determine the effect increasing keyword lengths. If the 

former decreased gradually while while  increased, balancing the effects, 

 observed in Vidanagamachchi et al. 

(2012).

  The work of Pandiselvam et al. (2014

(2006) do not include any proteomics or other text analysis 

regarding CW time complexity except comparisons of 

string matching algorithms. Therefore their results are 

not discussed.

  In order to put the work reported in this paper in 

Walter

37 alphanumeric characters. Their analysis was based 

on the average number of character references they 

32 and 64. We can compare this with proteomic string 

the known set of amino acids and much longer peptides 

with isoforms acting as keywords and very much longer 

peptide sequences with isoforms and variants acting 

as input texts: inexact keywords to be matched against 

inexact input strings. P
m
 may decrease with n

a

possible value in a randomised experiment being 1/n
a

with even 0

 

  The characterisation we did on proteomic string 

matching reveals a high degree of variants and isoforms 

             (a)                                     (b) 
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pose this problem as a limited tolerance inexact string 

can be used in this latter context.

The limited tolerance algorithm was designed to solve 

implementation of Aho-Corasick algorithm. This limited 

tolerance idea can easily be extended to CW algorithm. 

using peptide patterns generated from protein digestion. 

Then the input text is a protein assembled from digested 

peptides (eg: unreviewed protein in a database or a set 

consider the peptides digested (in-silico) from a generated 

reference protein:

(M or C)’ 

follows; Figure 10(a) shows how the tolerance can be 

this as shown in Figure 10(b) for the proposed limited 

tolerance variant.

 (a) Handling tolerance using original AC algorithm; (b) AC algorithm with limited tolerance; (c) handling 

tolerance using original CW algorithm; (d) CW algorithm with limited tolerance

be generated as follows; Here the minimum length of a 

pattern is 4 and the position 5 of the input text (protein 

sequence) was aligned to the root of the FSM. Figure 

10(c) shows how the tolerance can be handled by the 

for the limited tolerance variant.

it is shown that the limited tolerance methodology can 

save computational time by reducing the branches. 

tree may become larger with all possible tolerances; 

the time for searching should change with them too. 

The value of b
T 

varies based on the allowed tolerances 

and its value becomes high if the number of variants 

the results of the entire analysis [equations from (2) to 

(20) in the complexity analysis] when applying them 

AC and CW algorithms. As we have demonstrated 

performance improvement. It is also very likely to have 

a considerable effect on average time complexity of CW 

analysis provided in this paper can easily be used for this 

variant of CW and AC by pre-processing the keyword 

tries as indicated in Figure 10.
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CONCLUSION 

The average complexity analysis of CW algorithm 

provides a comprehensive and a systematic analysis 

helps to formally interpret previously reported empirical 

solution space of CW. We have provided implements to 

capture parameters that cannot be explicitly incorporated 

thus permitting a systematic evaluation of their effects 

too. The importance of this nature of performance 

evaluation model for CW is highlighted in the context of 

heavy application dependence of runtime performance. 

The set of equations can be used easily by other 

researchers to carryout comprehensive investigation of 

  The application to limited tolerance inexact multiple 

string matching context is also new and can save 

computing time by exploiting mutations/variations 

present within peptide sequences to reduce the branching 

b
T 

expected shift length (this is always less than the length 

w
Min

b
T

time performance of CW algorithm. The effect of 

keyword length distribution and the number of keywords 

can be analysed based on generic trie structures that 

can be built to represent particular application domains 

following the guidelines provided in our work. 

The authors convey their sincere gratitude to Dr R.G. 

Ragel and Prof. M. Niranjan who are partners in the main 

for early work with them led the authors to undertake the 

current investigation.
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